Time: 3 hours

Marks: 50

- (1) Prove or disprove.
 - (a) A finite extension of \mathbb{Q} can contain only finitely many roots of unity.
 - (b) There exists a polynomial $f \in \mathbb{Z}[x]$ of degree greater than 1 that is irreducible modulo p for all primes p.

(c) If α is contained in a subfield of \mathbb{R} that is Galois of degree 2r over \mathbb{Q} , then α is constructible.

- (d) Galois group of the splitting field of the polynomial $x^4 2x^3 8x 3$ over \mathbb{Q} is A_3 .
- (e) $\mathbb{Q}\sqrt[3]{2}$ is not contained in any cyclotomic extension of \mathbb{Q} . (5× 5)
- (2) Let p be a prime, and let m, n be positive integers. Give necessary and sufficient conditions on m and n for \mathbb{F}_{p^n} to have a subfield isomorphic with \mathbb{F}_{p^m} . Prove your answer. (8)
- (3) Let ζ be a primitive 7th root of unity, and consider the cyclotomic extension $K = \mathbb{Q}(\zeta)$ over \mathbb{Q} .
 - (a) Find the Galois group of K over \mathbb{Q} .
 - (b) Find all intermediate subextensions, i.e. all subfields $E \subseteq K$ such that E contains \mathbb{Q} .
 - (c) Find primitive elements for all subextensions E of part (b). Note that $\alpha \in E$ is a primitive element for E if $E = \mathbb{Q}(\alpha)$. (2+2+4)
- (4) Let $f \in \mathbb{Q}[x]$ be a monic irreducible polynomial of degree n. Let K be a splitting field and let $G = \operatorname{Gal}(K/\mathbb{Q})$.
 - (a) Prove that G is a transitive subgroup of S_n with o(G) divisible by n.
 - (b) Prove that if n is prime, then G contains an n-cycle.
 - (c) Suppose that degree of f is 5 and f has exactly 3 real roots. Prove that $G \cong S_5$. (3+2+4)