Algebra-IV, IInd Year BMath

Semestral Exam
May, 2022

Time: 3 hours
Marks: 50
(1) Prove or disprove.
(a) A finite extension of \mathbb{Q} can contain only finitely many roots of unity.
(b) There exists a polynomial $f \in \mathbb{Z}[x]$ of degree greater than 1 that is irreducible modulo p for all primes p.
(c) If α is contained in a subfield of \mathbb{R} that is Galois of degree $2 r$ over \mathbb{Q}, then α is constructible.
(d) Galois group of the splitting field of the polynomial $x^{4}-2 x^{3}-8 x-3$ over \mathbb{Q} is A_{3}.
(e) $\mathbb{Q} \sqrt[3]{2}$) is not contained in any cyclotomic extension of \mathbb{Q}.
(2) Let p be a prime, and let m, n be positive integers. Give necessary and sufficient conditions on m and n for $\mathbb{F}_{p^{n}}$ to have a subfield isomorphic with $\mathbb{F}_{p^{m}}$. Prove your answer.
(3) Let ζ be a primitive 7 th root of unity, and consider the cyclotomic extension $K=\mathbb{Q}(\zeta)$ over \mathbb{Q}.
(a) Find the Galois group of K over \mathbb{Q}.
(b) Find all intermediate subextensions, i.e. all subfields $E \subseteq K$ such that E contains \mathbb{Q}.
(c) Find primitive elements for all subextensions E of part (b). Note that $\alpha \in E$ is a primitive element for E if $E=\mathbb{Q}(\alpha)$.
$(2+2+4)$
(4) Let $f \in \mathbb{Q}[x]$ be a monic irreducible polynomial of degree n. Let K be a splitting field and let $G=\operatorname{Gal}(K / \mathbb{Q})$.
(a) Prove that G is a transitive subgroup of S_{n} with $o(G)$ divisible by n.
(b) Prove that if n is prime, then G contains an n-cycle.
(c) Suppose that degree of f is 5 and f has exactly 3 real roots. Prove that $G \cong S_{5}$. $(3+2+4)$

